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Abstract--The leaks through steam-generator cracks are the subject of research carried out in cooperation 
between EDF and UCL. A model to predict the mass flow rate has been developed and has been 
successfully validated. The purpose of the paper is to present this model and to show some comparisons 
between the results and the presently available data. The model takes into account the persistence of some 
metastable liquid in the crack and the special flow pattern which appears in such particular geometry. 
Although the model involves the use of several correlations (friction, heat transfer . . . .  ), no adjustment 
of parameters against the data has been needed, neither in the single-phase of the flow, nor in the 
two-phase part. 

Key Words: choked flow, cracks, flashing, leak, metastable liquid, speed of sound, steam generator, 
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I. INTRODUCTION 

In nuclear power plants, some local failures can occur in steam generators. They are due to stress 
corrosion and they can involve leaks from the primary cooling system to the secondary cooling 
system. The leak rates are often very low and the cracks are characterized by a relatively short 
transit time of the fluid, a very short width and a large wall roughness. 

The assumption of leak-before-break, i.e. the assumption of the existence of a detectable leakage 
threshold, is made in relation with the plant operation safety. Continuous operation of the system 
is allowed until such a threshold is reached. Consequently, it is important to accurately predict the 
leak rate in a tube wall crack. Such prediction involves the calculation of the critical flow. 

At present, there are several ways to determine analytically the critical flow rate through cracks. 
They are based on Fauske's (1962) model, Moody's (1965) model and Pana's (1976) method. 
Fauske developed a critical flow model, where the critical flow condition corresponds to a 
maximum flow rate for the given momentum flux, pressure and quality at the critical section, 
whereas in Moody's model the maximum flow rate is calculated for the given energy flux, pressure 
and quality at the critical section. Both models, whose inconsistencies have been demonstrated by 
Giot & Meunier (1968), assume that the expansion occurs in an equilibrium manner. Pana (1976) 
proposed a method for calculating the critical mass flow rate with subcooled or saturated water, 
taking into account the fluid friction in the channel. Thermal equilibrium between the phases is 
also assumed. The mechanical energy balance equation is used for the liquid phase flow part and 
the homogeneous equilibrium model, or, alternatively Moody's model describes the two-phase flow 
part. 

John et al. (1988) have successfully compared Pana's method with some experimental data 
obtained with inlet subcooled liquid. However, the use of Pana's method requires the choice 
between two two-phase models. 

Other experimenters, like Nabayashi et al. (1991),  also use Moody's model under saturated inlet 
conditions and adjust the crack depth to obtain a good agreement. 

Amos & Schrock (1984) described an experimental investigation of the phenomenon in 
rectangular slits at high pressure and with subcooled stagnation conditions. They proposed a new 
model including the effects of friction and non-equilibrium flashing. The criterion for flashing 
inception was based on the Alamgir-Lienhard correlation (Alamgir & Lienhard 1981) and the 
relaxation of the metastable liquid was assumed to occur exponentially. The agreement between 

541 



542 v. FEBURIE et al. 

the model and the data was good for the mass flux prediction; however, the location of the 
flashing along the flow path, and the pressure drop in the two-phase region were not accurately 
predicted. 

In the present paper, a new simplified model is proposed which calculates the leak rate in a tube 
wall crack and the pressure distribution along the crack depth for several thermohydraulic 
conditions. The variation of the cross-section area and the effects of wall friction and wall heat 
flux are taken into account. 

As the water is subcooled in the tubes of a steam generator, i.e. at the crack inlet, bubble 
nucleation and bubble growth take place inside the crack. Therefore, some degree of thermal 
non-equilibrium between the liquid and its saturation state can be expected. Several authors have 
studied the influence of thermal non-equilibrium on the critical flow in pipes or nozzles. Let us 
mention in particular Lackm6 (1979), Bilicki & Kestin (1990), Bilicki et al. (1990) and Yan et al. 
(1990, 1991a, b). The applicability of their models in the case of critical flows through cracks needs 
to be examined. The model proposed in this paper incorporates some of their ideas, especially those 
expressed in Lackm6's work. 

After presenting in section 2 a simplified geometrical model of the cracks, the basic assumptions 
and balance equations of the flow are written in section 3. The set of equations is complemented 
by appropriate closure laws. The use of the entropy balance equation appears suitable in the case 
of the irreversible process of flashing of a metastable liquid: the internal entropy source can be 
clearly identified, and this helps in understanding the flow evolution. The necessary condition of 
critical flow is obtained, and the compatibility condition is discussed. 

The flow model is the basis of a computer code. The calculation procedure is described and some 
examples of results are given. A comparison between some available data and the calculated results 
is presented in section 4. It is concluded that the proposed model enables the prediction of the flow 
through cracks and offers good potential for interpreting future experimental results. 

2. SIMPLIFIED CRACK GEOMETRY 

The description of the crack geometry is a basic element necessary to build an analytical model. 
Cracks cross the tube wall and extend more or less parallel to the tube axis. However, they are 
very complicated and tortuous. Indeed, the mean surface roughness has the same order of 
magnitude as the crack width. There are also some local area changes and deviations along the 
crack depth, but it is difficult to describe them. 

Herein the global geometry of the cracks is modeled, whereas the local features are included in 
the friction factor. As shown in figure 1, the crack is considered as a straight channel, cylindrical, 
converging or diverging. The crack depth corresponds to the tube wall thickness. The crack 
width is the smaller dimension (2-500/~m). In practice, it appears that the entrance width is 
generally smaller than the exit one. In most cases, the crack width is not constant along the crack 
depth. Therefore, we define a convergent or divergent angle. The large dimension of the crack, that 
is the crack length, varies between 4 and 15 mm. In this paper, we consider that this length is 
constant along the crack depth, even if the length at the entrance is in fact slightly larger than at 
the exit. 

The local geometry of the crack which is included in the friction factor takes into account 
the tortuosity. This global friction factor can be adjusted a priori by a single-phase flow 
experiment. 

3. MODEL 

3.1. Assumptions 

It is assumed that the flow through the cracks involves two parts: a single-phase liquid flow takes 
place near the crack inlet and extends to a cross section where nucleation starts. The location of 
the onset of nucleation corresponds to the achievement of some water superheat. Then the steam 
bubbles grow and eventually coalesce into flat steam pockets (figure 2). The steam pockets 
are surrounded by saturated liquid, whereas some superheated liquid persists at some distance 
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Figure 1. Simplified crack geometry. 

between the steam pockets. A typical diagram of the pressure and temperature profiles is shown 
in figure 3. Typically, the wall temperature Tw decreases by 10°C along the wall thickness (variable 
z). The liquid enters the crack at a temperature T L slightly higher than Tw(0), and becomes 
saturated at a location S where TL = Ts(p). Beyond this point, the liquid is superheated 
(metastable). Its temperature TLM goes on decreasing due to wall heat transfer. In the pressure vs 
thickness diagram, Pe denotes the pressure inside the tube, p is the actual local pressure in the crack 
and Ps (TLM) denotes the saturation pressure corresponding to TLM- The pressure at which the onset 
of nucleation takes place is denoted P0, and is somewhat smaller than ps(TLu). Beyond this 
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Figure 2. (a) Plane view of a crack; (b) section AA. 
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Figure 3. Temperature and pressure profiles along the crack depth. 
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onset-of-nucleation point, the remaining liquid is supposed to have a more or less constant 
temperature. 

The following set of  assumptions AI-A8 enables a simple mathematical model to be developed: 

A I. The flow is in steady state. 
A2. The fluid consists of three phases: metastable liquid, saturated liquid and 

saturated steam; the state variables (temperature, pressure) and the velocities 
being uniformly distributed in each phase at a given cross section. 

A3. There is no slip between the phases. This assumption is supported by the 
piston-like flow. 

A4. The liquid is subcooled at the crack inlet. This means that the present 
model cannot deal with the case where a mixture of liquid and vapour 
would exist along the inner wall of the tubes. Onset of nucleation is assumed 
to be reached at pressure P0, given by the following empirical law (Lackm6 
1979): 

Po = k ] p s ( T L M ) ,  [I] 

with 

kl = 0.95... 0.97. 
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A5. For the sake of  simplicity, the variation of  temperature TLM VS Z is neglected 
beyond the onset of  nucleation. 

A6. The flow is horizontal. 
A7. The resistance to conduction heat transfer in the wall is considered as 

negligible with respect to the resistance due to convection inside the crack. 
Hence, the wall temperature is assumed to be independent of  the flow in the 
crack. 

A8. Non-uniformities in the direction of  the crack length are neglected. 

Table 1 presents the consequences of  assumptions AI -A3 as well as the definitions of  the 
concentrations of  the phases. Note that: 

O~LM "-1- O~LS "4- OC G = 1. 

3.2. Single-phase Flow 

Let us consider the single-phase part of  the flow, located between the inlet of  the crack (z = 0) 
and the onset of  flashing (z = z0). The total pressure drop is given by the sum of  the longitudinal 
and singular pressure losses: 

- a p  = p (0) - p (z0) = Ap,ong + ap~og. [21 

The longitudinal pressure losses are calculated by the classical expression 

fo ° PwpLMW2 ApIong = Cr ~ dz, 

where Cr is the friction factor given by Churchill's correlation (Churchill 1977), Pw is the wetted 
perimeter, A is the cross-section area and PLM is the density of  the metastable liquid. The inlet 
singular pressure losses, including the inlet acceleration term, are given by 

Apsing = (1 -k ~) PLM W2(0), 
2 

where ~ = 0.5 is the head loss coefficient. 
The evolution of  the temperature of  the metastable l iquid--and in particular its value at the 

depth z0--is given by a simple heat balance: 

= f'-o hcPh[Tw(Z)--__TLM(Z) ] 
cp[TLM (Z0)-  TLM(0)] .J0 ApLMW dz. [3] 

In this equation, he denotes the heat transfer coefficient between the flowing liquid and the crack 
wall, Ph is the heated perimeter (Ph = Pw) and Cp is the specific heat of the liquid. The coefficient 
hc can be deduced from standard heat transfer correlations like those of Colburn, Sieder and Tate. 
Then [3] requires a step-by-step integration along the flow path. 

The set of  equations [2] and [3] is complemented by [1], which enables one to determine z0 if the 
mass flow rate (ApLMW) is known or vice versa (see section 4.1). 

3.3. Balance Equations and Closure Laws for the Region Where p <~Po 

In this region, the flow consists of three phases. 

Table 1. Variables and definitions 
Metastable liquid Saturated liquid Saturated vapour 

Temperature TLM = TLM(Z) TLS = Ts(z) To = Ts(z) 
P r e s s u r e  PLM m p(z ) PLS = p(z ) PG = p(z ) 
Velocity WLM ~--" W (Z) WLS = W (Z) W G = W (Z) 

M a s s  f r a c t i o n  I - y (1 - x)y xy 
Area fraction ~LM aLS 0[G 
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3.3.1. Mass balance equations 

The mass conservation equations for the metastable liquid (subscript LM), saturated liquid (LS) 
and saturated vapour (G) are, respectively, 

d 
d---z (OtLMARLMW) ~- - M  = FLS/L M [4LM ] 

£ 
(OILS A pL s W) =-- )(/I ~ [(1 -- x)y] = FLM/L s + FO/LS [4LS] 

dz u z  

and 

d j ~ d  
d--z (~6APG w) -- dz (xy) = F L S / G  , [4c] 

where / f /deno tes  the mass flow rate and F~/j is the mass flux per unit length of  crack depth from 
phase i to phase j. By summing up the phasic balance equations, we obtain the three-phase mass 
balance equation: 

d ~ dz (A~kpkw) = 0, k = LM, LS, G. [4] 

Introducing the mixture density Pm, defined by 

pm ~" E ~tk p~ , 
k 

[4] becomes 

o r  

d 
d-z (Apm w) = 0 [5] 

1 dw 1 dv m 1 dA 
- -  - [ 5 ' ]  

w dz U m dz A d z '  

where the volume Vm per unit mass, which is a function of  x, y, p and TtM, is calculated as 

a l  
l) m = - -  = (1 - -y)VLM "1- xyv o W (1 -- x)yVLS. [6] 

Pm 

3.3.2. Momentum balance equations 

The momentum balance equations for the metastable liquid, saturated liquid and saturated 
vapour, are: 

dp+d_ 
(XLMA ~ d z  (OtLMApI-MW2) ----- --Pw/LMTW/LM --  MW-~zz' [7LM] 

dp+cl d 
~,.sA dz dz (~"sAnLsw:) = -Pw~LsCw/,s + ,,~w ~ [(1 - x)y] [7Ld 

a n d  

~GA -~z + -~z (acApc w 2) = - Pw/G Zw/c + lflw (xy), [7G] 

where Pw/~ denotes the fraction of  the cross-section perimeter occupied by phase k and Zw/k is the 
wall shear-stress of  phase k. By summing up the phasic balance equations, we obtain the 
three-phase momentum balance equation: 

dp d 
A Tz + ~ Tzz (~*P*w2) = -Ek Pw,k~w/~ [7] 
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o r  

dp 1 d Pw 
d-"-Z "1- Adzz (ApmW2) ----- A "-TW' [7'] 

where Pw is the wetted perimeter and Zw is defined by 

~ Pw/k Zw/k k TW Pw 
By combining [5] and [7'], one obtains: 

_ _  dw Pw 
dp + Pm W -- ~W" [8] 
dz dz A 

3.3.3. Energy balance equations 
The energy balance equations for the metastable liquid, saturated liquid and saturated vapour, 

are 

( d-~ ~LM'APLMW hLM+ =PwLMqL~4--A;/ hLM+~- d--z' 

[ (w )a dd2 gLsApLsW hLs + -- Ph/LSqLS + / ~  hLS + - ~ -  ~ [(1 - x)y] 

[9LM] 

[9LS] 

and 

w2"~ d 
d I~GApcw(hG+W--~2)l=Ph/GOo+ ~l(hc+-~-)~z (Xy), [9o] 

Tzz 

where Ph/k denotes the fraction of the heated perimeter occupied by phase k and qk the wall heat 
flux to phase k. By summing up the phasic balance equations, we obtain the three-phase energy 
balance equation: 

oz o~,Ap, w +-~- = Phqw, [9] 

where Ph is the heated perimeter and qw is defined by 

qw = k 
Ph 

Let us define the mixture enthalpy per unit mass as 

hm&l~k otkpkhk. 

Then, using [5], [9] can be rewritten in the form 

d--z = M "  

We note that the mixture massic enthalpy, which is a function of x, y, p and TrM, can be calculated 
by the following expression: 

h m -- (1 --y)hLM + xyho + (1 -- x)YhLs. [1 1] 

3.3.4. Entropy balance equations 
The entropy balance equation for the metastable liquid is 

dy 
dzd (~LMApLuWSLM)= --MSL~ dz + .~/(1 - - y )  - -  

dSLM 
[12LM] 

dz ' 
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From [9LM ] combined with [4LM], one may derive 

dhLM __ Ph/LM qLM dw 
w " [14LM ] 

dz (! -- y ) M  dz ' 

and [7LM] combined with [4LM ] leads to 

dp PW/LM "CW/LM dw 
dz 0~LMA PLMW dz [I5LM] 

Hence, [13LM ] can be written as 

TL M dSLM ~- Ph/LM qLM ~ PW/LM ~W/LM [ 16LM ] 
dz (1 - y)21;/ 0tLMARL M 

and, finally, [12LM ] becomes 

d dy Ph/LM qLM W P , 
(O~LMApLMWSLM) -- --2~fSLM ~Z ~ TL M b TL M WjLMTW/LM • [17LM ] d--z 

Following a similar procedure for the saturated liquid, one obtains 

w 
d d Ph/LS tlL_______SS + Ts PW/LS ZWiLS ; [17LS ] d-z (~LsApLs WSLs) = 3;/SLs dz [(1 -- x)y] + Ts 

and for the saturated vapour, one can write 

d + Ph/~ qG + w 
dzd--- (%ApG wS~) = MSG ~ (xy) _ Ts -- Ts PW/GZW/G. [17G] 

By summing up the phasic entropy balance equations, one obtains the three-phase entropy balance 
equation: 

--dzd ~ (otkApk WSk) = i~[(SLs -- SLM) ~z + i~I(SG -- SLs) ~2 (Xy) + 2 . , 7  Ph/kgtk I'k W~. Pw/k ZW/~T~. [17] 

As the heat corresponding to the transfer of a mass flux 29I dy from the metastable phase to the 
saturated liquid is equal to the vaporization heat, we can write 

d d yy [18] -A~/hlv d--~z (xy) =/~t(hLM -- hts ) 
dz '  

and hence, [17] becomes 

dy hEM -- hLs dy ~ Ph/kdh + w Pw/~Zw/k [19] 

The first two terms on the r.h.s, of [19] consist in an "internal" entropy source A~s (dy/dz) due 
to the irreversible process involving the mass transfer from the metastable to the saturated liquid 
phase on the one hand, 

M(SLs -- SLM) ~--Yz = i~lCpLLn Ts dy 

TLM dz' 

and the heat transfer associated with this mass transfer through a temperature discontinuity on 
the other hand, 

hLM -- hLs dy 3'1 /( 1 1 "~ dy 

The sum A~s (dy/dz) is always positive or zero. 

dSLM dhLM l dp 
TLM d--'~-" = dz PLM dz" [13LM] 
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The last two terms on the r.h.s, of [19] consist of  an "external" entropy flux due to wall heat 
flux and an "external" entropy source due to wall friction. The sum is denoted AES. Let us define 
the mixture entropy per unit mass by 

Then [19] can be written as 

or, using [5], one obtains 

s m ~ l ~ k  gkPkS k. 

d 
-~Z (h Pm WSm ) = AIS "[- AES [201 

~-Z - - ~  AIs + AEs " [20'1 

The mixture massic entropy, which is a function of x, y, p and TLM, can be calculated as 

Sm= (1 - y)SLM + XySG + (1 -- x)ySLs. [21] 

3.3.5. A practical set of equations 

If we assume that ZW/k and qk depend only on the variables, and not on their gradients, the set 
of equations [5'], [7'] and [20'], complemented by an equation of state 

V m = 1)m(p, Sm, y), [22] 

and by a closure law for y 

dy 
d---~ = f(P' y' TLM), [231 

can be written in a matrix form: 

W 
0 1 0 0 

Um 

W 
1 - -  0 0 0 

Um 

~B m 0V m OV m 
0 --1 0S m 

0 0 0 1 

0 0 0 0 

dp 
dz 

dw 
dz 

dvm 
dy dz 

AIS dsm 
dz 

1 dy 
dz 

w dA 

A dz 

Pw 
- -  --'~- T w 

0 

AES 
- - - - r -  

M 

f(p, y, TLM) 

[24] 

3.3.6. Closure laws 
3.3.6.1. Saturated steam-water mixture fraction. In addition to z,, and qw, which have to be 

determined by some two-phase flow friction and heat transfer correlations (see below), a closure 
law is used to define the evolution of the saturated steam-water mixture fraction y along the crack 
(Hardy & Mali 1983): 

dy =k( l  )F ps(TLM)--P -It/,, 
- - Y / P ~ ~ ) /  [251 

d---~ 

where Peat is the pressure at the critical point and k is a constant for a given pipe geometry. 
According to this expression, the fraction dy of liquid which is transferred from the metastable 
phase to the saturated liquid phase per unit length is proportional to the remaining quantity 
of metastable liquid (1 - y )  and to some function of the metastability expressed by means of a 
pressure difference. 
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As the nucleation sites lie mainly in wall microcavities, it is assumed that different pipe geometries 
and wall roughnesses would lead to different values of the constant k. For example, assuming the 
same material, the number of  active sites per unit volume V of pipe is proportional to the wall 
surface Sw. Therefore, we suppose that k is proportional to the ratio 

f Pw dz 
Sw d 

v fA dz 

Using the data resulting from the Moby-Dick experiments, one obtains k = 4 for a cylindrical pipe 
having a ratio Pw/A = 200 m -~. For  other geometries, we propose to use 

Pw 
k = k 2 - - ~  wi thk2=0 .02 .  

Due to the lack of  experimental evidence, the dependence of  k2 with respect to the roughness is 
not taken into account explicitly in this expression. 

Equation [25] can be compared to the relaxation equation proposed by Bilicki & Kestin (1990). 
Let us define the quality: 

XA--xy. 

Then, [18] can be integrated at a given pressure between an equilibrium state characterized by a 
value X of  the quality and y -- I on the one hand and the actual non-equilibrium state on the other 
hand: 

hlv (X - A ~) = - (hLM -- hLS) ( 1 -- y). 

This equation can be written as 

X - .,T= - A h * ( l  - y),  

where Ah* denotes a non-dimensional quantity similar to the Jakob number 

Ah* = hLM -- hLs 

Equation [25] becomes 

dy d ( ~  
dz = dz [Ah*-'(X - ~ ]  = - k ( X  - ~ a h * - '  ~4' p~ -p-- ~ / '  [26] 

cri t  - -  P S , , ]  " 

If  we accept the two following approximations: 

Ah* = const and .~ = const, 

which clearly correspond to the flashing of  a stagnant fluid otherwise Ah* and X ~vould 
depend on the local value of  the pressure, which would depend on the coordinate, then [26] 
yields 

1/4 
" "  _k(. ,'s - , '  .) - 
dz kPcnt - Ps,/ 

This expression can be identified to the relaxation equation whose use has been proposed by 
Bilicki & Kestin (1990), 

dX X -  X 
dz wO ' 

by writing 

k( p_ -e )'"= ± 
\ P c r i t  - -  PS] wO" 
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By introducing w = dz/dt,  we obtain 

dX X - X 

dt 0 

The above development suggests that the validity of Bilicki & Kestin's relaxation equation could 
be limited to the flashing of a liquid moving in isobaric conditions. The structure of [26] is better 
suited for a flowing fluid subject to flashing. 

3.3.6.2. Wall shear stress. Three correlations for predicting the gas-liquid friction pressure 
gradient have been used and compared in the present study: 

(i) The Lockhart-Martinelli correlation, modified by Richardson, which yields 

~2 = (1 - ~G)-175, [27] 

where ¢2 denotes the ratio between the gas-liquid friction pressure gradient and 
the single-phase friction pressure gradient where the liquid flows at the same 
flow rate as in the multiphase flow. 

(ii) Chisholm's correlation 

4'2o = 1 + (T 2 - I){B[X(I - X)] {2-")/2 + X2-,}, [281 

where 4~. o denotes the ratio between the gas-liquid friction pressure gradient 
and the single-phase friction pressure gradient when the liquid flows at 
velocity w. The other parameters are defined as follows: 

B& 21z - 22-" + 2 
~ 2  1 

and 
\#G,] \ /4L ) I 

n = 0.25. 

(iii) A correlation proposed for capillary tubes by L i n e t  ai. (1989) and based on 
Churchill's correlation for single-phase flow, the Reynolds number being 
calculated with a mixture viscosity /~m : 

+ . ( , _  l 

3.3.6.3. Wall heat transfer. Three correlations have been tested for the prediction of the wall heat 
flux: 

(a) Chen's (1966) correlation. The two-phase gas-liquid heat transfer coefficient hTp 
is given by 

hxr = hcF + hbS, [30] 

where hc and h b refer, respectively, to convection and nucleate boiling, and F 
and S are weighting factors. The convection coefficient is calculated by the 
Dittus-Boelter correlation, whereas the nucleate boiling coefficient is determined 
from Forster-Zuber's correlation. The factor F is expressed as a function of the 
Martinelli parameter Xt,: 

Finally, 

with 

1 if Xt~ t <0.1 
F =  I 2.35(Xff +0.213) o.736 if Xt7 t >10.1. 

1 N - 6  11~-1.17 x -  I S = ( 1 + 2 . 5 3 x  . . . .  CTr J , 

ReTp R F t.25 Re L . 
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(b) Klimenko's (1988) correlation• This correlation is as follows: 

= ~ = (PG'~°2(kw'~ ° ° 9 _  __ , 
NU~ h c 0.087 Re °6 Pr[/6 \PL,] ~kL] 

with 

[31] 

Rein & PL wDh. 
/~L 

(C) Johnson ~ Abou-Sabe correlation (1952). When the phase change is only due to 
a longitudinal pressure gradient, these authors suggest the use of the following 
correlation: 

!l~./0. I 
hxe = ZGhL (1 -- ~)0.9' [32] 

where 

I// = t~33(1  __ 0t)4, 

Z G = [ I  +O006(pmWDh~0'5] ' 
• / j 

and hL is calculated by the Dittus-Boelter correlation. 

3•4• Critical Flow Condition and Compatibility Condition 
3.4.1. Critical flow condition 

The critical flow condition (Bour6 et al. 1976) is the vanishing condition of the determinant of 
the set of equations [24]. It can be easily seen that this determinant is equal to its minor involving 
the three first lines and the three first columns. One obtains then 

0p 
\/)m/(Wc~2 : -- (~m)Srn, y " [33] 

The critical velocity wc derived from the present model is thus identical to the classical expression 
of the speed of sound: 

wc = [34] 
Sm, Y • 

Here, the isentropic condition implies not only the absence of wall friction and wall heat flux, but 
also the absence of mass transfer inside the mixture, i.e. a constant value for y. 

3.4.2• Compatibility condition 

The compatibility condition is derived from the vanishing condition of a secondary determinant 
of the matrix of [24] at the critical section. This condition is necessary to guarantee a physical 
solution at the critical section. From [24], the compatibility equation is given by 

Vm (W¢~ 2 d.,z[ e w  ~ / / W e  '~2 ~Um TLM)(Wc~2(~Um AIS ~Vm~ 
~-~m) ~Sm--f(P,Y, - -  .-.. = [351 - - 0 

Taking [2@] and [23] into account, the compatibility equation can be rewritten as 

-A \Vm/ -~Z -~ rw \-~m/i \~S~ -d-Z + Oy dz ] = O. 

Further, as the expression of the gradient of the specific volume is 

dvm 8Vm dp dVm dy Ov m ds m - - = - -  + _ _  + 
dz Op dz Oy dz OSm dz '  

[36] 

[37] 
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taking into account [33], [36] becomes 

Tz -j L dz \ w j  

This equation is formally identical to the compatibility condition for a single-phase com- 
pressible flow. In particular, if this flow is frictionless and the cross section uniform, then [38] is 
reduced to 

dvm = ~--V-Vm s~.y" [39] 

However, just as in single-phase flow, this condition cannot be fulfilled at any section in the pipe 
under these circumstances: thus, the critical section is located at the pipe outlet. This conclusion 
holds in the case where dA/dz < O. 

4. C A L C U L A T I O N  PROCEDURE AND RESULTS 

4.1. Calculation Procedure 

A computer program has been developed to calculate the flow through the crack (critical or not) 
according to the model presented in section 3. 

An iterative procedure is used in this computer program to converge towards the boundary 
conditions, i.e. at one end the inlet pressure and temperature of the subcooled water, and at the 
other end either the pressure of the secondary side when the critical regime is not achieved or [33] 
when the flow is critical. 

This procedure works as follows: 

1. Using [2] and [3], the first step consists of determining the flow rate, by assuming 
that the flow remains liquid throughout the depth of the crack (Lc), and by 
considering the outlet pressure, given by 

P0 = 0.97ps(TLM). 

2. The set of  o.d.e.s, for three-phase flow is then integrated step by step using a 
Runge-Kutta  adaptative method for the fourth order with the following initial 
conditions: 

--velocity w corresponding to the estimated flow rate 
- - X  = 0 
m y  = 0  

- -P = P0 = 0.97ps(TLM ) 
- - S m  = f(Po, TLM). 

The integration is performed by means of pressure steps until either the 
critical flow conditions (the determinant of the matrix of the set of o.d.e.s. 
vanishes) or the outlet pressure is reached. This second step allows one to 
determine the distance LTp of the three-phase flow zone for the given initial flow 
rate. 

3. A new flow rate can now be calculated with the length of the single-phase (liquid) 
zone equal to L c -  Lrp according to the procedure described in point 1 above. 

This iteration is repeated until each of the following parameters converges within a given relative 
accuracy: 

--flow rate 
--lengths of  single phase and/or three-phase flow zone 
----quality X at the exit 
- -mass  fraction y at the exit. 
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In order to evaluate the r.h.s, of  the set of o.d.e.s., different correlations for the wall shear stress, 
[27]-[29], and for the wall heat transfer, [30]-[32], can be used. 

The choice between these correlations is an option in the computer program. 
A sensitivity study (see section 4.2.2) shows that the calculated mass flow rates are practically 

independent of the correlations used for the pressure drop and for the heat transfer in the 
three-phase flow. The assumption of an adiabatic flow leads to approximately the same results. 

4.2. Comparison Between Experimental Data and the Present Model 

Two types of tests with slits have been selected: (i) the John et al. (1988) tests; and (ii) the Amos 
(1983) tests. 

4.2.1. John et al. (1988) tests 

These tests have been chosen because their results are very coherent and seem to have been 
made in good conditions, even if the size of  the slits are larger than the cracks we want to 
study. 

The slits are rectangular and their dimensions are well known. The depth of the slits is 46 mm 
and the length 80 mm. The width ranges from 0.25 to 0.44 mm. Several roughnesses have been 
tested and range from 5.3 to 287/~m. 

For  each slit, some single-fluid flow experiments have been performed in cold water to determine 
the global friction factor. The results have been used without any adjustment to the computer 
program. 

For each slit, two-phase flow tests have been done for different upstream pressures (40, 60, 80 
and 100 bar), and, for each pressure, several upstream subcooled temperatures (2-60°C) have been 
tested. The exit pressure ranged from 4 to 9 bar. 

More than 70 tests have been compared with the present model (figure 4). This model shows 
a reasonable agreement with the data (better than +12%).  We note also that the present 
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Figure 4. Comparison between the test results from John et al. (1988) and the present model. 
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Figure 5. Critical mass velocity vs Tat(p ) - T at the entrance of the channel for different inlet pressures: 
a comparison between the test results from John et al. (1988) and the present model. 

m o d e l  can  fair ly well r ep roduce  the flow rate  decrease  wi th  the subcoo led  t empe ra tu r e  decrease  
(~gure 5). 

4 .2 .2  A m o s  (1983) tests 

The  tests have been car r ied  ou t  wi th  real  c racks  whose  d imens ions  are  b igger  than  those  we are  
in teres ted in. The  c racks  h a d  a dep th  o f  63.5 ram, a length o f  a b o u t  20 m m  and  a wid th  rang ing  
f rom 0.127 to 0.381 mm.  The  t h e r m o h y d r a u l i c  pa r a me te r s  are  the u p s t r e a m  pressure  ranging  f rom 
41 to 162 b a r  a n d  the ups t r eam subcoo led  t empe ra tu r e  rang ing  f rom 0 to  65°C. 

Table 2. Comparison between data from Amos (1983) and calculations using the present model 

Wall Gc Gc 
Run p= AT, t~ roughness ~ experimental calculated AG~ 
No. (MPa) (°C) (m x 10 -6) (--)  ((kg/m2 s) × 104) ((kg/m2 s) x I04) (%) 

57 4.216 27.9 0.3 0.305 3.233 3.247 +0.4 
58 4.176 14.4 0.3 0.305 2.513 2.523 +0.4 
59 4.270 59.2 0.3 0.305 4.105 4.279 +4.2 

27 7.073 29.5 0.3 0.177 4.256 4.146 - 2.6 
28 7.075 15.5 0.3 0.177 3.309 3.268 - 1.2 
30 7.096 62.8 0.3 0.177 5.737 5.517 -3.8 

41 9.590 60.8 0.8 0.348 5.471 5.525 + 1.0 
42 11.583 56.0 0.8 0.348 5.518 5.744 +4.1 
43 9.583 29.7 0.8 0.348 4.140 4.228 +2.1 
44 9.628 14.3 0.8 0.348 3.228 3.266 + 1.2 
45 11.607 29.1 0.8 0.348 4.368 4.483 +2.6 

74 15.413 54.7 0.3 0.316 6.995 6.787 -2 .9  
76 11.674 11.8 0.3 0.316 3.696 3.506 - 5. I 
78 15.433 25.6 0.3 0.316 4.805 5.026 +4.6 

MF 191~,--n 

Nominal opening slit -- 0.381 × 10 -3 m. AGc -- Gc,~ - Gc,~p × I00. 
Gc,p 
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Table 3. Comparison between data from Amos (1983) and calculations using the present model 

Pc (MPa) APe (%) 
Pexp 

Run No. Amos (1983) Present model (MPa) Amos (1983) Present model 

57 2.423 1.963 2.047 + 18.4 - 4.0 
58 3.148 2.421 2. 387 + 31.9 + 1.4 
59 1.286 1.081 1.313 - 2 . 0  - 17.6 

27 4.197 3.341 2.970 +41.3 + 12.5 
28 5. 342 4.057 3.400 + 57.1 + 19.0 
30 2.265 1.904 1.878 + 20.6 + 1.4 

41 3.377 2.805 3.552 - 4 . 9  -21 .0  
42 4.310 3.780 4.478 - 3.8 - 15.6 
43 5.730 4.505 4.820 + 18.9 - 6.5 
44 6.756 5.406 5.264 + 28.3 + 2.7 
45 7.196 5. 543 5.997 + 20.0 - 7.6 

74 6.423 5.405 6.135 +4.7 - 11.9 
76 7.634 6.769 5.905 +29.3 + 14.6 
78 10.350 7.858 7.613 + 36.0 + 3.2 

Nominal opening slit = 0.381 x 10 -3 m .  A P e  - P¢~lc - Pcexv x 100.  
Pc exp 

Tables 2 and 3 and figures 6-9 present the results of comparisons between the present model 
and 14 sets of data (width: 0.381 mm). As each set of data corresponds to an operation of 
dismounting and mounting the test section, the wall roughness and the inlet head loss coefficient 
had to be adjusted by means of cold water preliminary test results. The data used for the present 
comparison consist of averages calculated over several measurements made for each test run. The 
average relative deviation between the measured mass velocities Gc,xp and the calculated mass 
velocities Gc~al~ obtained with the present model is similar (2.6%) to the deviation obtained by 
Amos & Schrock (1984) (2.4%), whereas, for the critical pressure, the deviation obtained with the 
present model is 9.9% instead of 22.6% with Amos & Schrock model. It is interesting to note in 
figures 6 and 7 and the pressure profiles are also correctly predicted. The improvement of 
such predictions with respect to the model proposed by Amos & Schrock (1984) is illustrated in 
figure 8. 

A sensitivity analysis of the model has been checked for a typical test run (figure 9). We note 
that the wall heat transfer correlation has almost no effect on the predictions, whereas small effects 
are found when varying either the wall shear-stress correlation, the value of parameter kl used in 
[1], the wall roughness or the inlet head loss coefficient. On the contrary, the parameter k2 which 
appears in the semi-empirical law governing the evolution of the non-equilibrium, strongly affects 
the results when it is varied by 2 orders of magnitude. 

5. CONCLUSIONS 

A new model for two-phase choked flow through cracks is proposed. It takes into account the 
thermal non-equilibrium which appears when initially subcooled water is released in a piston-like 
steady-state flow. 

The crack is considered as a straight channel which can be uniform, convergent or divergent. 
Wall roughness is determined a pr ior i  by single-phase flow data because the a pr ior i  knowledge of 
the hydraulic characteristics of the cracks remains an unsolved issue. Wall heat flux and wall 
friction are calculated by classical single- and two-phase flow correlations. 

The fluid is modelled as a three-phase mixture consisting of metastable liquid, saturated 
liquid and saturated vapour. The slip between the phases is neglected. The set of balance equations 
is written and complemented by a closure law for the irreversible mass transfer between the two 
liquid phases. This law appears to be an extension of the relaxation equation (Bilicki & Kestin 
1990). 

The critical flow conditions associated with the compatibility condition are found to be formally 
similar to single compressible flow results. 
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The model is implemented in a computer program designed for the simulation of steam-generator 
small leaks. The results have been compared with some data published by John et al. (1988) and 
Amos (1983). Good agreement has been found between the present results and the experimental 
data. The validation will proceed further for smaller cracks using a new test facility currently under 
construction at EDF. 

Acknowledgement--The authors thank lr. G. De Pelsemaeker for his fruitful cooperation in the development 
of the computer program. 
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